

Groups acting on rooted trees

- **Def.** The infinite rooted tree of arity n is the set $\{0, \ldots, n-1\}^*$ (or n^* for short). The root of the tree is the empty word ϵ .
- **Def**. A tree automorphism of the infinite tree of arity n is a bijection $f: n^* \to n^*$ that fixes the root and preserves incidence.
- **Def.** The **state** of a tree automorphism $f: n^* \to n^*$ at some $v \in n^*$ is the tree automorphism $f@v: n^* \to n^*$ defined by (f@v)(w) = f(vw).
 - A tree automorphisms sends subtrees to subtrees.
- **Def.** The **activity** act(f) of a tree automorphism f is the permutation by which it acts on the first level.

Figure 1: The portrait of a tree Figure 2: The associated transautomorphism

ducer to a tree automorphism

- **Def**. An action of a group G on the infinite rooted tree is a group homomorphism $G \to \operatorname{Aut}(n^*)$.
- **Def**. A group G acting on an infinite tree is **fractal** if the section map $\varphi: G \to \operatorname{Aut}(T^*)$, $g \mapsto (g @ 0, \dots, g @ n - 1)$ has image G.
- **Def.** A fractal group G is **contracting** if there is a finite set N (the **nucleus** of G) such that for each f there is only finitely many $w \in n^*$ such that $f@w \notin N$.
- **Def**. A fractal group G is regular branch if it has a finite index subgroup K such that $K^n \leq \psi(K)$.

Theorem [Bartholdi-Noce 2022]

Solutions to Equations over Groups acting on Rooted Trees

Leon Pernak (pernak@math.uni-sb.de)

Department of Mathematics, Saarland University

Tree languages

- **Def.** If T is a (finite or infinite) tree and A a (finite) set, then a map $T \to A$ is a **labelling** of T by the alphabet A.
- Def. A formal language of infinite trees is a set of labellings over an alphabet A of some fixed infinite tree T.
- **Def.** A **tree automaton** on k-ary trees labelled by Ais a tuple (Q, q_0, Δ, F) where
 - Q is a finite set of states,
 - $q_0 \in Q$ is the initial state,
 - $\Delta \subseteq Q \times A \times Q^k$ is the transition relation,
 - F is a set of accepting states.
 - A tree automaton can perform an acceptance check on a labelled tree: Start at the root of the tree in the initial state q_0 . If the root is labelled by $a \in A$, choose q_1, q_2 s.t. $(q_0, a, q_1, q_2) \in \Delta$. Then proceed recursively on the left subtree with q_1 and on the right subtree with q_1 . If there are choices of transitions in Δ such that along each path in the tree infinitely many accepting states are reached, the tree is accepted.
- **Def**. A formal language of infinite trees is **regular** if it is accepted by a tree automaton.
 - The class of regular tree languages is closed under union, intersection and complement and has decidable emptiness problem [Rabin 1964].

Theorem [Niwinski 1991]

If L is a countable regular language of infinite trees, there is a finite set X of infinite regular trees and a tree automaton \mathcal{A} on the alphabet $A \cup X$ such that

 $L = \mathcal{L}(\mathcal{A}, X) := \mathcal{L}^{fin}(\mathcal{A})_{\to X}$

The set of portraits of a contracting regular branch group is a regular tree language.

UNIVERSITÄT DES SAARLANDES

Equations over self-similar groups

The goal here is to solve (systems of) equations over groups, aka existentially quantified formulas over the group language. For fractal (self-similar) groups, one can utilize the recursive structure:

• Suppose we are given the equation aXbY = 1. • Solutions for X, Y in a self similar group have form $X = \operatorname{act}(X)(X_0, X_1)$ and $Y = \operatorname{act}(Y)(Y_0, Y_1).$

• Hence the equation is equivalent to the three conditions act(a) act(X) act(b) act(Y) = id,

$$a_0 X_i b_j Y_k = 1$$
 and $a_1 X_{i'} b_{j'} Y_{k'} = 1$.

• Idea: Repeatedly applying this procedure reduces to a finite system of equations with "small" coefficients.

Theorem [Lysenok et al. 2013]

It is decidable whether a quadratic equation has a solution in the Grigorchuk group.

Theorem [Sidki et al. 2018]

The simultaneous conjugacy problem is solvable in the group of bounded tree automorphisms.

Bottom up algorithms

- Solve the equation over the nucleus of the group this is a finite amount of computations.
- Perform a reachability analysis on the tree automaton. Can we reach the starting state from the accepting states?
- Use computed solutions of the equations on lower levels of the automaton to build solutions on higher levels.
- For now: Stick to equations with one variable, i.e. $X^{k} = 1, X^{k} = a, \dots$

Input:	
Input:	
Output	
1:	Inv ·
2:	Tor
3:	whil
4:	fe
5:	
6:	
7:	
8:	
9:	e
10:	fe
11:	
12:	
13:	
14:	
15:	e
16:	\mathbf{end}
17:	retu

An algorithm for $X^2 = 1$

A finite set $F \subseteq \text{Trees}_{S_2}^2$ for which inverses and being order 2 is known. A tree automaton (Q, s_0, Δ, F) on $S_2 \cup F$ -labelled binary trees. t: The set $Tor = \{q \in Q \mid \exists f \in \mathcal{L}(\mathcal{A}_q, F) : f^2 = \mathrm{id}\}$ $\leftarrow \{ (p,q) \in F^2 \mid p \cdot q = \mathrm{id} \}$ $\leftarrow \{q \in F \mid q^2 = \mathrm{id}\}$ le size of *Inv* or *Tor* increases do for all rule pairs $(q, a, q_1, q_2), (q', a', q'_1, q'_2) \in \Delta$ do if $a = a' = 1 \land (q_1, q'_1) \in Inv \land (q_2, q'_2) \in Inv$ or $a = a' = \sigma \land (q_1, q'_2) \in Inv \land (q_2, q'_1) \in Inv$ then $Inv \leftarrow Inv \cup \{q, q'\}$ end if end for or all rules $(q, a, q_1, q_2) \in \Delta$ do $a = \operatorname{id} \wedge q_1 \in Tor \wedge q_2 \in Tor$ or $a = \sigma \land (q_1, q_2) \in Inv$ then $Tor \leftarrow Tor \cup \{q\}$ end if end for while **irn** Tor

Results

Theorem

It is decidable whether a contracting regular branch group is torsion-free.

Future Goals

• Can this method be generalized to arbitrary equations?

• Is the theory of contracting regular branch groups decidable?

References

[1] Damian Niwiński.

On the cardinality of sets of infinite trees recognizable by finite automata.

In Mathematical Foundations of Computer Science 1991, pages 367–376, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.

[2] Laurent Bartholdi and Marialaura Noce. Tree languages and branched groups. Mathematische Zeitschrift, 303, 2023.

[3] Michael O. Rabin. Decidability of second-order theories and automata on infinite trees. Bulletin of the American Mathematical Society, 74:1025–1029, 1968.